Sysmac Library for NJ/NX Machine Automation Controller

SYSMAC-XR006

Vibration Suppression Library

✅ Increase material handling speed to reduce production cycle time.

Issue 1: When handling speed is increased, the machine and objects vibrate and vibration settling time is required.

Issue 2: Slides or spilling that occur during material handling result in poor product quality.

Vibration Suppression Library offers solution!

Function Blocks in this library suppress vibration after and during high-speed material handling, significantly reducing production cycle time.
Vibration Suppression Function Block Selection

Challenge Suppress vibration.

Solution The vibration of the specified resonance frequency is reduced.

- **Choosing vibration suppression over travel time**
 - Multiple Frequency VS Filter 1 (MultiVSFilter1)
 - Vibration can be reduced by specifying up to five resonance frequencies.

- **Balancing vibration suppression with travel time**
 - Resonance Frequency Specific Vibration Suppression Parameter Calculation 1 (VSMoveParam1)
 - Vibration can be reduced by specifying a resonance frequency. (Patent pending)

Challenge Suppress slides and spilling.

Solution The vibration is reduced by smooth movement.

- **Specifying travel time**
 - Time Specific Vibration Suppression Profile 1 (VSConstTimeProfile1)
 - The position profile for smooth acceleration and deceleration is calculated according to the specified parameters.

- **Specifying distance and velocity in constant velocity zone**
 - Constant Velocity Specific VS Profile 1 (VSConstVelProfile1)
 - The position profile for smooth acceleration and deceleration is calculated according to the specified parameters.
Applications

Semiconductor chip handler

- **Issue**: The chip handler needs to wait over the socket until the vibration stops.

 - **Handling time**: 1.0 s
 - **Travel time**: 500 ms
 - **Vibration settling time**: 500 ms

- **Solution**: Function Blocks in the Vibration Suppression Library shorten handling time.

 - **Handling time**: 0.2 s
 - **Travel time**: 200 ms

Semiconductor inspection machine

- **Issue**: The vision sensor cannot inspect a chip until the vibration stops after a pallet is moved.

 - **Inspection time per chip**:
 - **Travel time**: 120 ms
 - **Vibration settling time**: 300 ms
 - **Vision inspection**:
 - Handling time per pallet: 420 ms per chip x 400 chips = 168 s

- **Solution**: Function Blocks in the Vibration Suppression Library shorten vibration settling time.

 - **Inspection time per chip**:
 - **Travel time**: 120 ms
 - **Vibration settling time**: 100 ms
 - **Vision inspection**:
 - Handling time per pallet: 220 ms per chip x 400 chips = 88 s
Semiconductor die bonder

Issue
The arm cannot bond a chip until the vibration stops.

Solution
Function Blocks in the Vibration Suppression Library shorten vibration settling time.

Handling time (end of arm): **0.21 s**

Travel time: 180 ms
Vibration settling time: 30 ms

FPD stacker crane

Issue
- The crane cannot load or unload a cassette until the horizontal vibration stops.
- Resonance frequency varies depending on the height position of a cassette.

Solution
Function Blocks in the Vibration Suppression Library shorten vibration settling time.

Handling time (with load at the highest position)

Travel time
Vibration settling time: **0.4 s**

Application
The stacker crane loads and unloads a glass substrate cassette onto and from a shelf.
Liquid filling and packaging machine

Issue
The travel speed is limited to avoid splashing liquid onto the sealing part of a pouch.

Travel time: 1.2 s
Shorter travel time causes sloshing of liquid in a pouch, resulting in sealing failure due to its wet sealing part.

Solution
Function Blocks in the Vibration Suppression Library shorten travel time without sealing failure.

Travel time: 1.0 s

Application
The machine fills a pouch with liquid and transfers it to the sealer to heat seal it.

System configuration

Programs created by combining Function Blocks in Vibration Suppression Library and motion control instructions are used to suppress vibrations.
Compatible Models

<table>
<thead>
<tr>
<th>Name</th>
<th>Model</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Machine Automation Controller</td>
<td>NX701-□□□□□□□□/NJ101-□□□□□□□□</td>
<td>Version 1.10 or later</td>
</tr>
<tr>
<td></td>
<td>NJ501-□□□□□□□□/NJ301-□□□□□□□□</td>
<td>Version 1.10 or later</td>
</tr>
<tr>
<td>Automation Software Sysmac Studio</td>
<td>SYSMAC-SE2□□□□□□□□□□□□□□□□□□□</td>
<td>Version 1.14 or higher</td>
</tr>
<tr>
<td>G5 Servo Drive with Built-in EtherCAT Communications</td>
<td>R88D-KN□□□□□□□□□□□□□□□□□□□</td>
<td>Version 2.10 or later</td>
</tr>
</tbody>
</table>

Function Block (FB)/Function (FUN) Specifications

<table>
<thead>
<tr>
<th>Name</th>
<th>FB/FUN name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Multiple Frequency VS Filter 1</td>
<td>MultiVSFilter1</td>
<td>Creates, from the command position of the axis, the command position that can suppress up to five vibrations that occur on the equipment.</td>
</tr>
<tr>
<td>Time Specific Positioning Parameter Calculation 1</td>
<td>TimeToMoveParam1</td>
<td>Calculates parameters needed for creating the command pattern that can reach the target position in the specified time when positioning is performed using MultiVSFilter1.</td>
</tr>
<tr>
<td>Resonance Frequency Specific Vibration Suppression Parameter Calculation 1</td>
<td>VSMoveParam1</td>
<td>Calculates the S-curve (i.e., velocity, acceleration, and jerk) parameters for suppressing the vibration that occurs during single axis positioning. High-speed travel is achieved by suppressing vibration of the specified resonance frequency.</td>
</tr>
<tr>
<td>Constant Velocity Specific VS Profile 1</td>
<td>VSCostVelProfile1</td>
<td>Calculates the position profile with the specified velocity in constant velocity zone. Calculates a smooth position profile for each of the acceleration and deceleration distances, so that residual vibration at the stopping position can be reduced and the vibration during constant velocity motion can also be suppressed.</td>
</tr>
<tr>
<td>Time Specific Vibration Suppression Profile 1</td>
<td>VSCostTimeProfile1</td>
<td>Calculates the position profile for the high level S-curve with a specified travel time. Positioning can be made in smooth velocity and acceleration/deceleration from the start to end points.</td>
</tr>
</tbody>
</table>

Sysmac is a trademark or registered trademark of OMRON Corporation in Japan and other countries for OMRON factory automation products. EtherCAT® is registered trademark and patented technology, licensed by Beckhoff Automation GmbH, Germany. Other company names and product names in this document are the trademarks or registered trademarks of their respective companies. The effects of reduction in time in this document are based on the comparison with the customers’ existing equipment and for reference only. Omron does not warrant that the content of this document does not infringe any third-party intellectual property rights.

Note: Do not use this document to operate the Unit.